THE JOURNAL OF ANTIBIOTICS

STRUCTURAL STUDIES ON EBELACTONE A AND B, ESTERASE INHIBITORS PRODUCED BY ACTINOMYCETES

KAZUMICHI UOTANI, HIROSHI NAGANAWA, SHINICHI KONDO, TAKAAKI AOYAGI and HAMAO UMEZAWA

Institute of Microbial Chemistry 14–23 Kamiosaki 3-Chome, Shinagawa-ku, Tokyo 141, Japan

(Received for publication July 26, 1982)

The structures of ebelactone A and B, esterase inhibitors produced by *Streptomyces* sp. MG7-G1 strain, have been determined to be 3,11-dihydroxy-2,4,6,8,10,12-hexamethyl-9-oxo-6-tetradecenoic 1,3-lactone and 2-ethyl-3,11-dihydroxy-4,6,8,10,12-pentamethyl-9-oxo-6-tetradecenoic 1,3-lactone, respectively, by their spectral analyses.

In the course of our studies on enzyme inhibitors produced by microorganisms, two potent esterase inhibitors named ebelactone A and B, were isolated from the cultured broth of the strain MG7-G1 which was closely related to *Streptomyces aburaviensis*¹⁾. They were determined to be new members of mycolic acid β -lactone. As reported in our previous papers^{2, 3)}, esterastin, an esterase inhibitor produced by *Streptomyces lavendulae* MD4-C1, was also structurally a mycolic acid β -lactone. Thus, again the β -lactone structure was suggested as an active group that inhibits esterase. In this paper, we report on structural elucidation of ebelactone A and B.

Ebelactone A (1a) was obtained as colorless needles¹⁾, mp 86°C, $[\alpha]_D^{20} - 221^\circ$ (*c* 1, methanol), UV maximum at 291 nm in methanol. The molecular formula for 1a was established by elementary analysis and mass spectrometry as $C_{20}H_{84}O_4$. In the mass spectrum, the molecular ion peak (*m*/*z* 338) and the peak of a decarboxylation product (*m*/*z* 294) were observed. The IR spectrum indicated the presence of hydroxyl (3500 cm⁻¹), β -lactone (1820 cm⁻¹) and carbonyl (1695 cm⁻¹) groups. The ¹H NMR spectral analysis (Table 1) showed the presence of a partial structure CH₈CHCHCHCH₃. By comparison with the spectral data of the β -lactone moiety of esterastin⁸⁾ and antibiotic 1233 A⁴⁾ (Table 2), the structure was shown to be A in Fig. 1. The ¹H NMR spectrum (Table 1) also showed the presence of partial structures B and C in Fig. 1. The spectral data of 8-H (δ 3.59, doublet of quartets) and 10-H (δ 2.86, doublet of quartets) indicated that these two fragments should be linked through a carbonyl group. In the ¹⁸C NMR spectrum, two carbonyl, seven methine, two methylene, seven methyl and two olefinic carbons were observed as shown in Table 3.

 $\begin{array}{c|cccccc} CH_{3} & CH_{3} & CH_{3} & CH_{3} & CH_{3} \\ R_{1}CH-CHCHCH_{2}C = CHCHCCHCHCHCHCHCH_{2}CH_{3} \\ O=C & O & O \\ 1 & | & | & 4 & 5 & | & 10 & | & 12 & 13 & 14 \\ O=C & O & O & OR_{2} \\ 1a: & R_{1}=CH_{3}, R_{2}=H \\ 1b: & R_{1}=CH_{3}, R_{2}=CH_{3}CO \\ 2a: & R_{1}=CH_{3}, R_{2}=CH_{3}CO \\ 2b: & R_{1}=CH_{3}CH_{2}, R_{2}=CH_{3}CO \\ \end{array}$

 $\begin{array}{ccccc} CH_{8} & CH_{8} & CH_{3} & CH_{3} \\ & & & & & & \\ & & & & & \\ CH_{3}CH-CHCHCH_{2}CHCH_{2}CHCCHCHCHCHCH_{2}CH_{3} \\ O=C-O & O & OH \\ & & & \\ O=C-O & & O & OH \\ & & & \\ & & & \\ CH_{3} & CH_{3} & CH_{3} & CH_{3} & CH_{3} \\ & & & \\ CH_{3}CHCHCHCHCH_{2}C=CHCHCCHCHCHCHCH_{2}CH_{3} \\ H_{3}COC & OH & O & OH \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\$

	δ ppm (J Hz)						
Assignment	Ebelactone A (1a)	Ebelactone B (1b)	Acetylebelactone A (2a)	Acetylebelactone B (2b)			
2'-H ₃	—	1.06 t (7)	—	1.06 t (7)			
$1'-H_2$		~1.86		~1.85			
2-CH ₃	1.38 d (7.5)	_	1.39 d (7.5)				
2-H	3.29 dq (7.5, 4)	3.20 dt (7, 4)	3.27 dq (7.5, 4)	3.21 dt (7, 4)			
3-H	3.88 dd (4, 8)	3.92 dd (4, 8)	3.89 dd (4, 8.5)	3.84 dd (4, 8)			
4 - H	~2.0	~2.0	~2.0	~2.0			
4-CH ₈	0.87 d (6.5)	0.86 d (6.5)	0.86 d (6.5)	0.86 d (6.5)			
5-H ₂	~1.8 2.35 m (10)	~1.8 2.38 m (10)	~1.8 2.38 m (10)	~1.8 2.4 m (10)			
6-CH ₈	1.73 d (2)	1.73 d (2)	1.73 d (2)	1.72 d (2)			
7-H	5.04 m (2, 10)	5.04 m (2, 10)	5.13 m	5.12 m			
8-H	3.59 dq (10, 7)	3.58 dq (10, 7)	3.53 dq (10, 7)	3.54 dq (10, 6.5)			
8-CH ₈	1.12 d (7)	1.12 d (7)	1.12 d (7)	1.12 d (6.5)			
10-H	2.86 dq (7.5, 3)	2.86 dq (7.5, 3)	2.98 dq (6.5, 6.5)	2.98 dq (7, 7)			
10-CH ₃	1.10 d (7.5)	1.10 d (7.5)	1.05 d (6.5)	1.05 d (7)			
11 - H	3.50 m	3.51 m	5.12 m	5.12 m			
11 - OH	3.03 m (2)	3.04 m (2.5)	_	_			
12-H	~1.4	~1.4	~ 1.4	~1.4			
12-CH ₈	0.79 d (6.5)	0.78 d (6.5)	0.86 d (6.5)	0.86 d (6.5)			
$13-H_2$	~ 1.7	~ 1.7	~ 1.7	~1.7			
$14-H_3$	0.87 t (7)	0.87 t (7)	0.85	0.85			
11-Ac	-	_	2.04 s	2.04 s			
1-OCH ₈	_		—				

Table 1. ¹H NMR spectral data of ebelactones and their acetyl derivatives.

Chemical shifts, δ (ppm) were measured in CDCl₃ using TMS as the internal reference.

Treatment of **1a** with acetic anhydride in pyridine gave acetylebelactone A (**2a**); an ester absorption at 1735 cm⁻¹; a singlet acetyl methyl signal at δ 2.04. The 11-H signal (δ 3.50) of **1a** shifted to δ 5.12, indicating the acetylation of the 11-hydroxyl group.

Catalytic hydrogenation of 1a gave dihydroebelactone A (3). In the spin decoupling experiment of 3, irradiation at δ 2.93, which was between the signals of the 10-H (δ 2.86) and 11-OH (δ 3.0), caused a collapse of the multiplet signal of the 11-H at δ 3.53 to doublet (J=8 Hz), suggesting the 12-methine.

Methanolysis of **1a** with 0.01 N NaOH in methanol gave a methyl ester (**4**), showing the presence of hydroxyl (3500 cm⁻¹), ester (1730 cm⁻¹) and carbonyl (1705 cm⁻¹). In the ¹H NMR spectrum of **4**, a multiplet signal at δ 2.41, which had the long-range coupling (J=2 Hz) with the olefinic proton signal

 β -lactones.

Fig. 1. Partial structures of ebelactones.

CH_{3} - CH	\dot{C} H- CH ₃ CH ₃ $\begin{vmatrix} & & \\ - & & \\ - & & -C=CH-CH- \\ - & -CH-CH- \\ - & -CH$		Chemical shifts (δ, ppm)			
		β -Lactones	0=C	-0		
A	В					
CH ₃ OH	$\overset{2'}{C}H_{3}-\overset{1'}{C}H_{2}-\overset{2}{C}H-\overset{8}{C}H-$	Ebelactone A	3.29	3.88		
-CH-CH-	O = C = O	Ebelactone B	3.20	3.92		
10 11	0-0-0	Esterastin ³⁾	3.21	4.34		
С	D	Antibiotic 1233A ⁴⁾	3.32	4.50		

Carbon -	δ (ppm)		Carbon	δ (ppm)	
	1a	1b	Carbon	1a	1b
1	171.7 s	171.7 s	12	36.6 d	36.60
2	49.1 d	56.0 d	13	24.9 t	24.9 t
3	82.9 d	81.1 d	14	13.5 q	13.7 c
4	35.5 d	35.5 d	$4-CH_3$	10.9 q	10.9 c
5	42.9 t	42.9 t	6-CH₃	16.4 q	16.4 c
6	135.5 s	135.5 s	8-CH ₃	16.4 q	16.4 c
7	126.5 d	126.5 d	10-CH ₈	9.5 q	9.5 c
8	45.3 d	45.4 d	12-CH ₈	14.9 q	14.9 c
9	217.5 s	217.5 s	2-CH ₃	12.9 q	
10	45.2 d	45.2 d	1'		21.4 t
11	74.6 d	74.6 d	2'		11.4 c

Table 3. ¹³C NMR chemical shifts of ebelactone A and B.

Chemical shifts were measured in CDCl₃, using TMS as the internal reference.

Assignments, s, d, t and q show multiplicity of off-resonance experiment.

(7-H) at δ 5.00, was assigned to the 5-H. Furthermore, in the ¹H NMR spectrum of **1a** (Table 1) the signal of 5-H (δ 2.35) was collapsed by the irradiation at δ 2.0 (4-H).

From the chemical and spectral data described above, the structure of ebelactone A was proposed to be 3,11-dihydroxy-2,4,6,8,10,12-hexamethyl-9-oxo-6-tetradecenoic 1,3-lactone (1a). This structure was confirmed by X-ray crystallographic analysis of its *p*-bromobenzoate, which also disclosed the stereochemistry (2S, 3S, 4S, 6E, 8R, 10S, 11R, 12R). The X-ray analysis will be reported in the other paper.

Ebelactone B (1b) was obtained as colorless needles¹), mp 77°C, $[\alpha]_D^{23} - 203^\circ$ (*c* 1, methanol), UV maximum at 291 nm in methanol, IR hydroxyl (3540 cm⁻¹), β -lactone (1810 cm⁻¹) and carbonyl (1700 cm⁻¹). These spectral data were very similar to those of 1a. Its molecular formula was determined by elementary analysis and mass spectrometry as $C_{21}H_{36}O_4$. In accordance with the molecular formula, the ¹⁸C NMR spectrum of 1b (Table 3) showed one more methylene carbon signal at δ 21.4 other than the signals of 1a. In the ¹H NMR spectrum of 1b (Table 1) a partial structure D (Fig. 1) was shown. Thus, the structure of ebelactone B was proposed to be 2-ethyl-3,11-dihydroxy-4,6,8,10,12-pentamethyl-9-oxo-6-tetradecenoic 1,3-lactone (1b).

These structures of **1a** and **1b** were in good agreement with the high-resolution mass spectroscopic data of their acetyl derivatives **2a** and **2b** (Table 4).

J value (Hz)

> 4 4

4 4

Table 2. Chemical shifts and coupling constants of

Table 4. Significant fragment ions of acetylebelactone A and B in high-resolution mass spectra.

Fragment ion	Acetylebelactone A (2a)			Acetylebelactone B (2b)		
	Formula	Observed	Error (mu)	Formula	Observed	Error (mu)
M+	$C_{22}H_{36}O_{5}$	380.2522	-3.8	$C_{23}H_{33}O_5$	394.2760	4.3
$M^+ - CO_2$	$C_{21}H_{36}O_3$	336.2653	-0.9			
M ⁺ -AcOH				$C_{21}H_{34}O_3$	334.2525	1.9
M^+ –(CO_2 + AcOH)	$C_{19}H_{32}O$	276.2439	2.8	$C_{20}H_{80}O$	290.2586	-2.1
X	$C_{12}H_{19}O_{2}$	195.1371	-1.2	$C_{13}H_{21}O_2$	209.1581	4.1
Y	$C_{10}H_{17}O_{3}$	185.1166	-1.0	$C_{10}H_{17}O_{3}$	185.1189	1.2
$X-CO_2$	$C_{11}H_{19}$	151.1485	-0.2	$C_{12}H_{21}$	165.1639	-0.3
Y-AcOH	$C_8H_{13}O$	125.0967	0.1	$C_8H_{13}O$	125.0962	-0.3

Experimental

Melting points were uncorrected. UV spectra were recorded on a Hitachi 124 spectrometer, IR spectra on a Hitachi EPI-S2 infrared spectrometer, ¹H NMR and ¹³C NMR spectra on a Varian XL-100A spectrometer and mass spectra on a Hitachi RMU-6M or M-80 spectrometer. Optical rotations were measured by a Carl Zeiss LEP A2 polarimeter. Column chromatography was carried out by using silica gel (Wakogel C-300) or reversed phase silica gel (Merck, Silica gel 60 silanised).

Ebelactone A (1a)

The inhibitor **1a** was purified by the method described in a previous paper¹), and crystallized from methanol-water as colorless needles, mp 86°C, $[\alpha]_D^{20} - 221^\circ$ (*c* 1, methanol), UV max. in methanol 291 nm (ε 258), IR (KBr) 3500, 2950, 1820, 1695, 1460, 1125, 980, 870 cm⁻¹. The ¹H NMR spectral data is shown in Table 1. *Anal.* Found: C 70.97, H 10.12, O 18.91, Calcd. for C₂₀H₈₄O₄: C 70.97, H 10.20, O 19.07. MS *m/z* 338 (M⁺).

Ebelactone B (1b)

The inhibitor **1b** was purified by the method described in a previous paper¹, and crystallized from methanol-water as colorless needles, mp 77°C, $[\alpha]_{D}^{26} - 203^{\circ}$ (*c* 1, methanol), UV max. in methanol 291 nm (ε 278), IR (KBr) 3540, 2950, 1810, 1700, 1460, 1130, 990, 975, 865 cm⁻¹. The ¹H NMR spectral data is shown in Table 1. *Anal.* Found: C 71.72, H 10.31, O 18.37, Calcd. for C₂₁H₂₆O₄: C 71.59, H 10.23, O 18.18. MS *m/z* 352 (M⁺).

Acetylebelactone A and B (2a and 2b)

Treatment of **1a** (10 mg) with acetic anhydride (0.05 ml) in pyridine (0.1 ml) overnight at room temperature followed by column chromatography on silica gel developed with *n*-hexane - chloroform (3: 1) gave a colorless oil (9.6 mg) of **2a**, $[\alpha]_{D}^{26}$ –196° (*c* 1, methanol), UV max. in methanol 292 nm (ε 297), IR (KBr) 3450, 2950, 1823, 1735, 1708, 1455, 1380, 1373, 1240, 1125, 980, 866, 755 cm⁻¹. The ¹H NMR and high-resolution mass spectral data are shown in Tables 1 and 4, respectively.

Acetylation of **1b** (25.7 mg) by the same manner yielded a colorless oil (24.0 mg) of **2b**. $[\alpha]_D^{26} - 184^\circ$ (*c* 1, methanol), UV max. in methanol 292 nm (ε 287), IR (KBr) 3450, 2950, 1820, 1735, 1705, 1455, 1380, 1370, 1240, 1120, 1000, 962, 870 cm⁻¹. The ¹H NMR and high-resolution mass spectral data are shown in Tables 1 and 4, respectively.

VOL. XXXV NO. 11

Dihydroebelactone A (3)

A solution of 1a (27.0 mg) in methanol (1 ml) was shaken with PtO₂ catalyst (5 mg) in a Parr apparatus under the pressure of 3.5 kg/cm² of hydrogen overnight at room temperature. The product was purified by column chromatography on silica gel eluted with *n*-hexane - chloroform - ethyl acetate (10: 10: 1) to give colorless needles of 3 (10.4 mg), mp 77 ~ 78°C, $[\alpha]_D^{23}$ -156° (*c* 0.5, methanol), UV max. in methanol 292 nm (ε 203), IR (KBr) 3450, 2920, 1820, 1690, 1455, 1380, 1123, 978, 863 cm⁻¹, MS *m/z* 340 (M⁺), ¹H NMR (CDCl₃) δ 0.87 (3H, t, *J*=7 Hz, 14-H), 0.87 (3H, d, *J*=6 Hz), 0.90 (3H, d, *J*=6 Hz), 0.93 (3H, d, *J*=7.5 Hz, 4-CH₃), 1.08 (3H, d, *J*=7 Hz, 8-CH₃), 1.10 (3H, d, *J*=7 Hz, 10-CH₃), 1.39 (3H, d, *J*=8 Hz, 2-CH₃), 2.86 (1H, dq, *J*=2 and 7 Hz, 10-H), 3.0 (1H, m, 11-OH), 3.24 (1H, dq, *J*=4 and 8 Hz, 2-H), 3.53 (1H, m, 11-H), 3.84 (1H, dd, *J*=4 and 8 Hz, 3-H).

Methyl Ester (4)

A solution of **1a** (10.1 mg) in 5 ml of 0.01 N NaOH in anhydrous methanol was kept at room temperature for 30 minutes. After addition of 5 ml of water, the solution was extracted with *n*-hexane (5 ml×3) and the extract was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluted with *n*-hexane - chloroform (3: 7) to yield a colorless oil of **4** (7.2 mg), $[\alpha]_D^{23} - 172^\circ$ (*c* 1, methanol), UV max. in methanol 292 nm (ε 325), IR (KBr) 3500, 2950, 1730, 1700, 1458, 1380, 1200, 1173, 990, 970 cm⁻¹, MS *m*/*z* 370 (M⁺). ¹H NMR (CDCl₃) δ 0.77 (3H, d, *J*=6.5 Hz, 12-CH₃), 0.84 (3H, d, *J*=6.5 Hz, 4-CH₃), 0.87 (3H, t, *J*=7 Hz, 14-H₃), 1.09 (3H, d, *J*=7.5 Hz, 10-CH₃), 1.11 (3H, d, *J*=7 Hz, 8-CH₃), 1.25 (3H, d, *J*=7.5 Hz, 2-CH₃), ~ 1.4 (1H, m, 12-H), 1.68 (1H, m, 4-H), ~ 1.7 (2H, m, 13-H₂), 1.71 (3H, d, *J*=2 Hz, 6-CH₃), ~ 1.8 and 2.41 (2H, m, 5-H₂), 2.72 (1H, dq, *J*=7.5 and 5.5 Hz, 2-H), 2.86 (1H, dq, *J*=7.5 and 3 Hz, 10-H), 3.12 (1H, m, *J*=2 Hz, 11-OH), ~ 3.5 (1H, m, 11-H), ~ 3.5 (1H, m, 3-H), 3.56 (1H, dq, *J*=10 and 7 Hz, 8-H), 3.72 (3H, s, 1-OCH₃), 5.00 (1H, m, *J*=10, 2 and 2 Hz, 7-H).

Acknowledgement

This work was partly supported by a contract NO1-CM-57009 with the Division of Cancer Treatment, the National Cancer Institute, U.S.A.

References

- UMEZAWA, H.; T. AOYAGI, K. UOTANI, M. HAMADA, T. TAKEUCHI & S. TAKAHASHI: Ebelactone, an inhibitor of esterase, produced by actinomycetes. J. Antibiotics 33: 1594~1596, 1980
- UMEZAWA, H.; T. AOYAGI, T. HAZATO, K. UOTANI, F. KOJIMA, M. HAMADA & T. TAKEUCHI: Esterastin, an inhibitor of esterase, produced by actinomycetes. J. Antibiotics 31: 639~641, 1978
- KONDO, S.; K. UOTANI, M. MIYAMOTO, T. HAZATO, H. NAGANAWA, T. AOYAGI & H. UMEZAWA: The structure of esterastin, an inhibitor of esterase. J. Antibiotics 31: 797~800, 1978
- ALDRIDGE, D. C.; D. GILES & W. B. TURNER: Antibiotic 1233A, a fungal β-lactone. J. Chem. Soc. (C) 1971: 3888 ~ 3891, 1971